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We report the results of testing the performance of a new, efficient, and highly
general-purpose parallel optimization method, based upon simulated annealing. This
optimization algorithm was applied to analyze the network of interacting genes that
control embryonic development and other fundamental biological processes. We
found several sets of algorithmic parameters that lead to optimal parallel efficiency
for up to 100 processors on distributed-memory MIMD architectures. Our strategy
contains two major elements. First, we monitor and pool performance statistics ob-
tained simultaneously on all processors. Second, we mix states at intervals to ensure
a Boltzmann distribution of energies. The central scientific issue is the inverse prob-
lem, the determination of the parameters of a set of nonlinear ordinary differential
equations by minimizing the total error between the model behavior and experimental
observations. c© 1999 Academic Press
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1. INTRODUCTION

Simulated annealing (SA) is an effective method for the optimization of complex cost
functions for which heuristic methods do not exist. Its strength is that under appropriate
conditions it will attain the global extremum of the cost function; its weakness is high
computational demand. For this reason it is of great importance to parallelize SA. Previous
work in this area has produced a number of methods that perform well on certain problems,
but we are not aware of algorithms that perform well on general applications.

In this paper we introduce a new class of algorithms for parallel SA that does not depend
on the structure of the optimization problem. We show that one particular implementation
of this algorithm is scalable for up to 100 processors at nearly 100% parallel efficiency.

In Section 2, we discuss the Metropolis method, SA, and the Lam-enhanced SA, and then
we review previous work and introduce our new approach to parallelizing SA. In Section 3,
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we describe our particular application, an inverse problem which arises in developmental
biology, in which the parameters of a set of nonlinear ordinary differential equations (ODEs)
are determined from time series data by a fitting process. In Section 4, we present our own ap-
proach to the problem and show the dependence of the performance of our approach on algo-
rithmic parameters. We also introduce an accurate method of measuring the quality of results.

Accurate measurement of the quality of results is important for two reasons. First, the
evaluation of the performance of a SA algorithm requires good statistics because of the
stochastic nature of the algorithm itself. Second, wall clock time reduction in computing is
almost always meaningless for measuring the parallel efficiency of the optimization algo-
rithms. A speedy floating point operation done by multiple processors does not guarantee
quicker solution of the problem because of possible alteration of convergence behavior by
parallelization. We show how changes in the quality of the answer computed in parallel
can be compensated for by constructing a function relating the quality of the answer to the
number of iterations required to obtain it in serial.

2. ALGORITHMS

Our approach involves a sequence of algorithms based upon the Metropolis algorithm
[17]. First SA [11] was introduced as an optimization method, generalizing the Metropolis
algorithm to include variable temperature for escaping from local minima effectively. Sec-
ond, Lam [12] further enhanced SA by adaptively controlling the rate of temperature de-
crease and the size of moves so as to maximize the optimization efficiency. Third, we have
parallelized Lam’s version of SA. As is well known, SA is difficult to parallelize due to
its intrinsic serial nature and direct parallelization of the Metropolis algorithm will not be
scalable. Our approach involves strategies of pooling statistics of both state and algorithm
parameters, while stirring the system.

Now, we will describe the Metropolis algorithm, the SA, and our parallelization.

2.1. The Metropolis Method

The well-known Metropolis algorithm is a method of sampling a Boltzmann distribution.
A system with energyEold is provisionally perturbed into a new state with energyEnew.
Such a perturbation is called a “move.” IfEnew< Eold the new state is accepted, and if
Enew> Eold the new state is accepted with probability∝exp(−(Enew− Eold)/T), whereT
is the temperature. If the new state is not accepted, the system remains in the old state. This
algorithm tends to transform any distribution into a Boltzmann distribution and maintains
a preexisting Boltzmann distribution [17].

The original purpose of this algorithm was to perform ensemble calculations numerically.
Although an ensemble typically has an infinite number of members and traditionally was
used for analytical calculations, the advent of computing machinery has led to the popularity
of making ensemble calculations by Monte Carlo methods such as the Metropolis algorithm.
In these methods, the ensemble is sampled and placed in computer storage. The ensemble
is stored as a very large array of structures, each containing the values of the microscopic
and macroscopic variables for that particular ensemble member.

The utility of an ensemble stems from the fact that an appropriate average for some quan-
tity over the ensemble will give the same result as taking a time average over observations
with a physical measuring device—the “ergodic property.” We note that the Metropolis
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algorithm itself can be thought of as an application of ergodicity, in the sense that an av-
erage over Metropolis samples gives the same result as either an ensemble average or a
physical measurement. Although the Metropolis algorithm has its own internal sense of
time, in terms of a current state that may or may not be replaced by a proposed new state,
that succession of states cannot be identified with the succession of states in an actual phys-
ical system. The ergodic nature of the Metropolis algorithm suggests the basic strategy of
parallelizing SA discussed throughout this paper.

2.2. Simulated Annealing

SA was first introduced as an optimization method by Kirkpatricket al. [11] using a
metaphor from statistical physics. SA generalizes the Metropolis algorithm by allowing the
temperature parameter to change. This temperature is usually lowered slowly during the
annealing process. The precise rate of change of the temperature, or the annealing schedule,
is the most essential part of SA as it determines the performance of the algorithm. A high
cooling rate leads to poor results because of lack of representative states, while a low cooling
rate fails to produce results in a practical amount of time.

A number of annealing schedules have been used, of which the three most important are
called logarithmic, Cauchy, and exponential [3]. It has been proved that SA will converge
to the global minimum of the cost function if temperature changes are governed by the
logarithmic schedule, in which the temperatureTk at stepk is given byTk= T0/ln k [6, 3].
These proofs use moves drawn from a Gaussian distribution. A faster schedule in which
Tk= T0/k was shown to converge to the global minimum when moves are drawn from a
Cauchy distribution [27], and this schedule is known as the Cauchy schedule. It is sometimes
called “fast simulated annealing.” Even faster is the exponential, or geometric, schedule
whereTk= T0e−ck. To our knowledge, no rigorous proof of the convergence of this schedule
to the global optimum has been made, although good heuristic arguments for its convergence
have been made for a system in which annealing state variables are bounded [9].

The severe computational requirements of SA mean that an exponential schedule is re-
quired for practical computation. Convergence behavior must be assessed numerically. In
these computations there is often little prior knowledge of the properties of the cost function,
a fact with two important consequences. First, it is usually necessary to choose a move gen-
eration function in a problem-dependent manner. This contrasts to proofs of convergence,
where the move generation function is essentially chosen in a schedule-dependent manner.
Second, the lack of prior knowledge of cost function properties can be compensated for by
using information about the cost function obtained during the annealing run itself. Sched-
ules that make use of such information are called “adaptive schedules.” Such schedules
adjust the rate of temperature decrease, based on the partial derivatives of the cost function
at a single point [9] or on its statistical properties [1, 8]. Of particular importance is the
adaptive schedule of Lam.

2.3. The Lam Schedule

The Lam schedule [12, 13] was derived by optimizing the rate at which temperature
can be decreased subject to the constraint of maintaining quasi-equilibrium. It differs from
other adaptive schedules in that it explicitly takes into account the effect of move generation
strategies and provides an adaptive recipe for their control. The Lam schedule is not widely
known, and its key features are reviewed below.
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The Lam schedule is an adaptive exponential schedule given by

sk+1 = sk + λ
(

1

σ(sk)

)(
1

s2
kσ

2(sk)

)(
4ρ0(sk)(1− ρ0(sk))

2

(2− ρ0(sk))2

)
, (1)

wheresk= 1/Tk, andTk is the temperature at thekth evaluation of the cost functionE.
σ(sk) is the standard deviation ofE at this step, andρ0(sk) is theacceptance ratio; that is,
the ratio of accepted to attempted moves. The four factors play the following roles:

1. λ is a quality factor. Makingλ smaller increases the quality of the answer but it also
increases the computation time.

2. (1/σ(sk)) measures the distance of the system from quasi-equilibrium.
3. (1/s2

kσ
2(sk)) is the inverse of the statistical specific heat which depends on the variance

[11].
4. (4ρ0(sk)(1− ρ0(sk))

2/(2− ρ0(sk))
2) is equal toρ2/2, whereρ2 is the variance of the

average energy change during a move. It is a measure of how effectively the state space is
sampled and was found to be at a maximum value whenρ0≈ 0.44.

Lam supplies a set of statistical estimators forσ(sk) and the average energyE(sk). These
estimators are computed from averages taken at two scales. The energy and variance are
averaged everyτ moves, whereτ is an empirical algorithm parameter on the order of 100 to
1000. These averaged energies are in turn averaged in an annealing-time decaying running
average, the time constants of which are set by the user. The running average is useful
in reducing errors inσ due to autocorrelation in the SA process. The dependence of the
estimated energy and variance on temperature is found by a fit to the probability density
function modeled by a local gamma distribution. Thus, the estimatedσs is used to lower
the temperature at each step according to Eq. (1).

2.4. Parallelization

The original Metropolis algorithm [17] from which most SA algorithms are derived seri-
alizes a parallel physical process, i.e., computing ensembles. In the Metropolis algorithm,
a new state always depends on one or more previous states plus one or more random vari-
ables. This serial nature of SA is an inherent distraction to parallelization. Much previous
work in parallelizing SA did not consider this underlying physical metaphor but attempts
to parallelize by dividing state variables or by multiple moves on the same variable among
processors [7].

The most successful scalable method, known as asynchronous parallelization, can lead
to acceptable speedup. For cost functions that are loosely coupled, i.e.,

E(x1, . . . , xi , . . . , xn) ≈ E(x1)+ · · · + E(xi )+ · · · + E(xn), (2)

each processor receives a copy of the state(x1, . . . , xi , . . . , xn). Each processorj then
executes the Metropolis algorithm, altering a range of state variablesxj , xj+1, . . . , xj+m.
Node j uses unchanged values ofxi for i < j and i > j +m while these state variables
are being altered by other processors. The state information of each processor will become
increasingly erroneous as this takes place, but after some number of iterations the processors
pool their new values ofxi and then dispatch them anew for further annealing. This method
can give good parallel speedup, but only if (2) is satisfied. For cost functions without such
properties, the algorithm can show catastrophic divergence [16].
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Our approach is to take the notion of the Metropolis algorithm as a convenient way
of generating ensemble samples on a serial computer and extend it by considering how
to generate ensemble samples on a parallel computer, while being careful to maintain
the Boltzmann distribution as the temperature is lowered. The essential ideas are very
simple. A Boltzmann distribution can be sampled in parallel by a set of processors which
all execute the Metropolis algorithm using independent Markov chains. Averages over
macroscopic variables are performed by pooling statistics obtained from all processors. As
the temperature is lowered, from time to time mixing occurs during which each processor
chooses a preexisting state of energyEs with probability∝exp(−Es/T). The detail of this
procedure are given in Section 4.1.2.

Elements of the above approach, pooling of statistics combined with mixing of states,
have been used separately by others. Frost has developed a method based on pooling energy
statistics among many processors, but without communication of state information. This
scheme implements an adaptive schedule which adjusts the cooling, based on estimates of
specific heat. No explicit measurements of speedup are reported [5, 4].

The idea of mixing and selecting states has been used in some related work. The sys-
tolic algorithm of Aartset al. makes a series of pairwise state selections according to
the Boltzmann distribution [2] and achieved 75% parallel efficiency on eight processors.
Roussel-Ragot and Dreyfus have reported a method designed to maintain the Boltzmann
distribution in parallel in which all processors synchronously make a move from a common
state and one of the accepted moves is randomly chosen as the new common state [24]. If
no moves are accepted, the process repeats until a new state is accepted by one processor.
If move generation is not adaptively controlled then, typically, acceptance rates are high at
high temperatures and low at low temperatures, so this algorithm can produce good speedup
at low temperatures. However, the same efficiency increase can be had in serial by adaptive
control of the move size. Ingber has proposed a similar method, but no information is given
on the speedup achieved [10]. Slezak was able to obtain 50% parallel efficiency on 40 pro-
cessors using a mixing method in which the state of the lowest energy processor is copied
to all processors [26]. None of these methods use all-to-all Boltzmann mixing, however,
nor are they parallelizations of an adaptive serial algorithm.

Our algorithm for parallel SA does not depend on any special properties of the cost
function. The algorithm was developed to solve a particular inverse problem arising in
developmental biology, in which the parameters of a set of nonlinear ODEs are determined
from time series data by a fitting process. This problem has proved refractory to many of the
common annealing schedules because the state variables for the optimization have widely
differing characteristic scales. Hence the problem requires the Lam schedule for solutions in
serial. Furthermore, the cost function associated with this problem is completely inseparable,
and asynchronous SA fails to converge. Therefore, we need to parallelize the Lam schedule
to solve this problem.

3. THE INVERSE PROBLEM IN GENE CIRCUITS

A set of techniques, called “gene circuits” has been developed for analyzing gene networks
[18, 21–23, 25, 20]. The gene circuit method takes gene expression data as input and
computes a regulatory circuit as output. We represent a circuit by the elementsTab of a
matrix, each one of which characterizes the regulatory effect of one gene on another by a
single real number for each possible paira andb. Thus if Tab is positive geneb activates
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genea; if it is negative geneb represses genea, and ifTab is zero geneb has no effect on
genea. This is the simplest model that allows for the possibility that each gene regulates
every other gene.

3.1. Chemical Kinetic Equations

The equations describe a stage of insect development in which the embryo contains only
cell nuclei which are not yet separated by cell membranes. Consider a linear array of cell
nuclei indexed byi , such that nucleii + 1 andi − 1 are the neighbors of nucleusi . Each
cell nucleus contains a copy of a regulatory circuit composed ofN genes, and which is
determined by anN× N matrix T. (Note thatN, n,m, andλ refer to quantities in Eq. (3)
in this section only.) The concentration of theath gene product in nucleusi is a function of
time, denoted byva

i (t). Then

dva
i

dt
= Raga

(
N∑

b=1

Tabvb
i +mavbcd

i + ha

)
+ Da(n)

[(
va

i−1− va
i

)+ (va
i+1− va

i

)]− λav
a
i ,

(3)

where N is the number of zygotic genes included in the circuit. The first term on the
right-hand side of the equation describes gene regulation and protein synthesis, the sec-
ond describes exchange of gene products between neighboring cell nuclei, and the third
represents the decay of gene products.

In (3), Tab is a matrix of genetic regulatory coefficients.mavbcd
i is a bias term aris-

ing from the spatially varying but time-invariant distribution of a maternally expressed
morphogenetic protein known as Bicoid (Bcd) [15, for a review], wherevbcd

i is the con-
centration of Bcd protein in nucleusi andma is the regulatory coefficient of Bcd acting
on zygotic genea. ga is a “regulation-expression function,” which we assume takes the
form ga(ua)= (1/2)[(u/√u2+ 1)+ 1] for all a, whereua= ∑N

b=1 Tabvb
i +mavbcd

i + ha.
Ra is the maximum rate of synthesis from genea, andha summarizes the effect of general
transcription factors on genea. The diffusion parameterDa(n) depends on the numbern of
cell divisions that have taken place and varies inversely with the square of the distance be-
tween nuclei. We assume that the distance between adjacent nuclei is halved after a nuclear
division.λa is the decay rate of the product of genea. Nuclear divisions are incorporated
by shutting down synthesis during each mitosis and doubling the number of nuclei.

3.2. The Cost Function

Our cost function is given by

E =
∑

all a, i, t, and
genotypes for

which data exists

(
va

i (t)model− va
i (t)data

)2+ (penalty terms) (4)

which is a function of ODE parameters and the experimental data. This dependence is en-
coded in the first term which contains the sum of the squared deviation of the solutions to
(3) for each time, gene product, genotype, and nucleus for which data exists. The penalty
terms limit the search space by adding a very large or (in some cases) infinite term to the
energy when parameters are outside the search space. Clearly, Eq. (2) is not satisfied by this
equation.
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The penalty terms5 in Eq. (2) are given by

Epenalty= 5Ra +5λa +5ua,

where5Ra and5λa represent search space limits forRa andλa, respectively. When these
search space limits were exceeded, the move was rejected without integrating the equations,
so this term may be thought of as being zero within the search space and infinity outside it.
The third penalty term is given by

5ua =


exp
(
3
(∑

ab

(
Tabvb

max

)2+ (mavbcd
max

)2+ (ha)2
))− 1

iff 3
(∑

ab

(
Tabvb

max

)2+ (mavbcd
max

)2+ (ha)2
)
> 0

0, otherwise.

(5)

Herevb
max andvbcd

max are the largest values ofv for genea andvbcd found in the dataset.
3 controls the size of the search space for terms that contribute toua, since a very large
penalty will arise whenever the argument of the exponential is greater than 1/3. Thus, the
effect of the penalty onua is to limit the maximum saturation ofu to (1−3).

3.3. Serial Optimization of the Cost Function

Lam’s schedule (1) is not dependent on any particular problem. A problem-specific move
generation scheme must also be supplied. In order to keep the overall acceptance rate close
to 0.44, the move generation scheme must allow for changes in the average size of moves.
Increases in the size of proposed moves tend to decrease the acceptance rate, and decreases
in the move size increase the acceptance rate. Larger moves are less likely to be accepted
at lower temperatures. The net result is that the size of moves decreases slowly during
the annealing run as the system samples the state space more and more selectively during
convergence to a global minimum. Here and in previous work move size was controlled by
drawing moves from an exponential distribution with a mean ofθi , so that a move consists
of changingxi to xnew

i by setting

xnew
i = xi ± θi ln ξ, (6)

where the sign is chosen randomly, and the random numberξ ∈ (0, 1] is drawn from a uni-
form distribution.θi is adaptively controlled for each variable by accumulating acceptance
statistics and periodically changingθi by setting

lnθi
new= 3.0(ρ0− 0.44)+ lnθi

old (7)

in such a way as to keep the acceptance rate at the desired level of 0.44.
The annealing process is initialized by first making a large number (10,000 in the work

reported here) of moves at a high (T = 1000) initial temperature, discarding all statistics to
erase any trace of the initial state, and then performing the same number of moves again to
gather initial statistics.

The annealing procedure is terminated when the average energy afterτ steps fails to
change by more than a stopping criterionκ three times in succession. The need for a stopping
criterion is characteristic of a problem with continuous variables. In a problem with discrete
variables like the traveling salesman problem (TSP) [14], the annealer would stop when the
energy became completely fixed—that is, when no further moves are accepted.
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The importance of the Lam schedule to this optimization problem can be summarized by
two observations. Without the adaptive control of move size, the algorithmfails to converge
to the global minimum. Without the statistical estimators for the variance, convergence
takes about three times as many iterations as when they are used.

The reliability of the SA procedure was assessed by assigning parameters randomly,
solving the equations, and then using the solutions at a few time steps as synthetic “data”
for the annealing procedure. Accuracy of the algorithm is then assessed by recovery of the
original parameters. In this paper we consider a test problem with two genes and eight nuclei.
The parameters associated with one gene are fixed, so seven are sought by the annealer. For
this problemRa, λa, andDa are recovered to about 0.01% accuracy,Tab andma to about
1%, andha to about 7%.

4. IMPLEMENTATION AND PERFORMANCE ANALYSIS

In this section we discuss the details of the implementation, how the results were analyzed,
and the results themselves.

4.1. Implementation

The two design principles of pooling statistics and periodically mixing states are imple-
mented as follows. This implementation was originally done with the Paragon message-
passing NX library, and the results described here were obtained with that implementa-
tion running on a 128-processor Paragon XPS at SUNY–Stony Brook. This machine is a
distributed-memory MIMD architecture with i860 processors. More recently the implemen-
tation has been ported to MPI for use on clustered workstations coupled by fast Ethernet.
Source code is available on request.

The analysis of performance in our study does not depend on the specifics of the particular
architecture as our focus of the analysis is on the quality of algorithms. The measurement
of parallel efficiency requires results from serial machines. For our serial performance data,
we used workstations with the Alpha 21164 processor, which is about 10 times faster than
the i860 in the Paragon.

4.1.1. Parallel Statistics

The Lam schedule takes three kinds of averages, of which two are concerned with the
current energy and variance and the third, with the control of move generation. Current
energy and its variance is estimated in two stages, in which averages overτ steps are in turn
averaged with past averages overτ steps with exponentially decaying weights. In the work
described here, we divide the cost function evaluations required to compute the average over
τ among all of the available processors. Following each evaluation of the cost function, each
processor lowers its temperature by an amount equal to the change in temperature in the
serial case multiplied by the number of processors, so that the temperature change overτ

moves is the same in the parallel and serial cases.
We do not parallelize the longer term averages used to estimate the local gamma distribu-

tion and, through it, the energy and variance. This approach was chosen as the most direct
route to parallelism; it has the advantage that Lam’s estimators can be used unchanged
with a synchronous and identical calculation of them taking place in each processor. It has
the disadvantage of introducing an artificial scaling limitation into the parallel algorithm
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because it is not possible to split the job onto more thanτ processors. In all calculations
reported in this paper,τ = 100.

During initialization, the 10,000 moves designed to erase the initial state are performed
separately on each processor. The subsequent set of initial moves designed to collect statis-
tics are allocated among the processors and performed in parallel. We have not made any
attempt to measure the minimum number of iterations required for the initial run of decorre-
lation moves, which are not part of the parallel algorithm. For this reason, measurements of
the number of cost function evaluationsN reported below do not include the initial 10,000
decorrelation moves, but do include the initial moves used to gather statistics.

Statistics on the acceptance rate of proposed moves are calculated in parallel by a straight-
forward parallelization of the serial method. In the serial case, acceptance statistics are
calculated over 100 sweeps, where a sweep is defined as a cycle of making moves on each
parameter in turn.

In the parallel case, each processor independently attempts a move on the same param-
eter. After one sweep withP processors,P attempted moves have been made on each
parameter among all the processors. After 100 attempted moves on each parameter have
been performed among all processors (100/P sweeps), acceptance statistics are pooled and
an identical calculation of the new average move size is performed in each processor. Move
generation (see Eq. (6)) is problem specific, and hence, our move generation module shares
almost no data with the code module responsible for calculating Lam statistics.

This fact, together with the need to make synchronous and identical calculations of both
Lam estimators and acceptance statistics, introduces the disadvantage that the number of
processors used for the calculation must be a divisor ofτ .

4.1.2. Mixing of States

The above procedure constitutes a parallelization of the sampling of a Boltzmann distri-
bution. Extension to a full parallel SA algorithm requires taking advantage of parallelism
to maintain a Boltzmann distribution while the temperature is being lowered. The funda-
mental limitation on increasing the rate of cooling in SA is that the Markov chain cannot
sample a sufficient number of states in the neighborhood of a given temperature to stay
in quasi-equilibrium. The solution to this problem is to allow each processor to sample
the states of other processors. Afterm repetitions of the loop overτ , such that the cost
function has been evaluatedmτ times altogether andmτ/P times in each processor, a set
of synchronous messages are passed by which each processor broadcasts its current energy
to all other processors. Each processor then randomly chooses a particular target processor,
with the probability of choosing processorp given by

e−Ep/T∑
i e−Ei /T

, (8)

and these choices are synchronously shared among processors. At this point each processor
is committed to adopting a new state from its particular target processorp, and the new
states are distributed with point-to-point messages.

In the absence of an analytical model for this algorithm, the optimal choice ofm is
an empirical process. Communication is essentially eliminated whenm is large. In the
case of smallm, favorable states will populate the system so rapidly that state variables
become excessively correlated. This correlation will lead to erroneously small estimates of
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the variance which in turn will cause the temperature to be lowered too rapidly, resulting in
severe loss of quality of the results. In the sequel, we show that both of these effects indeed
take place, but that a suitable choice ofm can lead to very high annealing efficiencies.

4.2. Performance and Analysis

Careful study of the efficiency of parallel SA encounters difficulty from two sources. First,
the stochastic nature of the algorithm requires careful statistical treatment of the results.
Second, parallelization can introduce changes in the quality of the final results which affect
the estimate of the speedup.

4.2.1. Average Performance with the Associated Error

Repeated annealing runs on the test problem typically gave results that had large variance,
about an order of magnitude in both the final energy and the number of iterations (N). In
performance studies, at least 100 runs were performed under each set of conditions and
arithmetic averages were taken overN and the final energyE. When error ranges for these
averages are shown, they were calculated by a bootstrapping (“jackknifing”) procedure [19].
Given a set ofJ final states,J samples are drawn randomly from the results without regard
to duplication and averaged. The error shown represents the extrema of the resulting set of
averages.

4.2.2. The Serial Performance Curve

In order to compensate for changes in the quality of the result because of parallelization,
it is desirable to know the expected number of serial iterations corresponding to a particular
energy. Then the speedup can be calculated by dividing the number of expected serial
iterations at the final energy obtained in parallel by the average number of parallel iterations
required. We first must establish the existence of such a serial performance curve for a given
cost function.

In the application of SA to a classical combinatorial optimization problem such as the
TSP, it is easy [13] to construct a curve relating the average final energy to the average
number of iterations required to attain that energy. Such a curve is obtained by varying the
overall cooling rate,λ. In a system with a continuous state space, the resulting quality is
determined not only byλ, but also by the stopping criterion,κ. This raises the possibility
that a given final energy does not correspond to a unique number of iterations.

We characterized the dependence of final energyE f and the number of serial iterations
Ns onλ andκ by an extensive series of numerical runs. At large values ofλ we noticed a
bimodal distribution of final energies, in which a small proportion of runs finished withE f

significantly greater than unity, while most runs completed withE f on the order of 10−3 or
less. In order to understand this behavior better, we performed a series of quenching runs,
in which the temperature was instantly lowered from the initial equilibration level to zero
at the start of annealing. A histogram of theE f resulting from such a set of runs is shown in
the inset to Fig. 1. The resulting distribution is strongly bimodal, with two empty decades
separating a peak around 102 from one at around 10−4. These indicate that the stochastic
dynamics of the annealing process is bistable, and we refer to the left-hand peak in the inset
to Fig. 1 as the “annealed attractor” and the right-hand one as the “quenched attractor.” Each
contains approximately the same number of points, are clearly separable, and the quenched
attractor contains enough points for statistical study.
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FIG. 1. Bimodal behavior. This figure shows the bimodal behavior of the solutionE f for given values of
algorithm parameterκ with algorithm parameterλ=∞. As shown by the inserted histogram, forκ = 10−8 we
see runs producingE f with mode around 102 and around 10−4 separated by two empty decades (4 runs fell in
the−2 bin). Note that the histogram uses logarithmic coordinates, while arithmetic averages were performed to
obtain the points on the graph. Hence the modes of the histogram differ from the plotted means.

We characterized the behavior of these two attractors further by varyingκ while holding
λ=∞. The result is shown in Fig. 1. It indicates that the annealing attractor shows de-
creasingE f with decreasingκ, but thatE f for the quenching attractor remains essentially
constant. Asλ decreases,E f ’s belonging to the quenching attractor become increasingly
rare. Whenλ<3× 10−3, the frequency drops to less than 10−3 and becomes undetectable.
We have never seen a representative of the quenching attractor withE f less than unity, and
in all cases for which averages are shown there was at least an order of magnitude separating
members of the quenching attractor from members of the annealing attractor. For this rea-
son, in the subsequent results we rejected allE f > 1 as a member of the quenching attractor.
These constituted less than 1% atλ= 1× 10−2 and 2 out of about 7800 experimental runs
performed in parallel.

We then characterized the dependence of the averageE f and Ns of the annealing at-
tractor onλ and κ, as shown in Fig. 2. Inspection of this figure shows that the upper
right-hand side of the energy/iterations plane is well coordinatized by curves of constant
λ andκ. In this region, changingλ alters the number of iterations required but has little
effect on the energy. Similarly, alteration ofκ affects the final energy but has little ef-
fect on the required number of iterations. The lower left-hand side of theE f –Ns plane is
the region where SA is most efficient. Curves which approach the lower left-hand portion
of the plane run into an envelope of maximum efficiency, which constitutes the desired
characteristic relationship between energy and serial iterations for efficient annealing. In
particular, note that a trajectory along this envelope can be traversed by varying eitherλ

or κ.
Close inspection of Fig. 2 reveals another interesting feature. Decreasingκ, while holding

λ= const for most values ofλ, produces an almost horizontal trajectory on theE f –Ns plane
which, when it encounters the envelope of maximum efficiency, traverses the envelope
towards the upper left. Similarly, increasingλ while holding κ = const for most values
of κ produces an almost vertical trajectory which, when it encounters the envelope of
maximum efficiency, traverses the envelope towards the lower right. The curves forλ= 10−1
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FIG. 2. SA characteristics. The dependence of Lam-enhanced SA’s serial performance on the algorithmic
parametersλ andκ. The solid and dashed lines in this figure connect sets of annealing runs performed with
common values ofκ andλ, respectively, as shown. Each point of intersection of a solid and dashed line represents
the results of a set of 100 annealing runs with the indicated values ofκ andλ. The point is plotted at a location
that indicates the average number of iterations and average final energy of that annealing run as shown. The solid
and dashed lines are linear interpolations between observed data points. The hollow box shows the region of the
Ns–E f plane plotted at high resolution in Fig. 3.

andκ = 10−9 provide informative exceptions to this generalization. Theκ = 10−9 curve
approaches the envelope and then leaves it, curling back toward the right. Theλ= 10−1

curve initially follows the envelope, but then departs from it and follows a trajectory parallel
to, but above, the envelope. These two curves describe the edge of aλ–κ sheet which has
been folded back on itself and projected on theE f –Ns plane, with the “envelope” the
projection of the fold.

The envelope of maximum annealing efficiency is in fact the desired serial performance
curve. We note that it contains approximately three log-linear regions, each characterized
by a particular power law dependency. That portion of the envelope corresponding to the
range of energies obtained in parallel annealing runs lies approximately on a single linear
segment (boxed), and we constructed a serial performance curve by sampling that region
densely and fitting to a power law.

Figure 3 shows the result, together with the fitting function. Each data point is the average
of 1000 independent annealing runs, with errors determined by bootstrapping as shown.
The data is well fit by the equation

log10 Ns = 8.396379− 0.466807 log10 E f . (9)
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FIG. 3. The serial performance curve. The average number of iterations is shown on the vertical axis and
the average final energy is shown on the horizontal axis. Each point is the average of 1000 annealing runs, with
probable error determined by bootstrapping, as shown. The solid line represents the results of a power law fit to
this data (see text for coefficients).

With this equation in hand, we know that if a parallel run requiresNP iterations to run on
P processors and finishes with a final energyEP, then the speedupS is given by

S= Ns(EP)/NP. (10)

We now have all the tools required to analyze the results of parallel annealing runs.

4.2.3. The Parallel Algorithm Performance

We performed parallel annealing at a variety of mixing intervalsm. In all parallel runs,
κ = 10−5 and λ= 10−3, which causesNs and E f to lie on the appropriate part of the
serial performance curve. Because the initial set of decorrelating moves is not performed
in parallel, we do not count it when evaluatingNP. Both E f and NP varied withm, as
shown in Table I which gives the dependence ofE f and NP for 50 processors.NP falls
with increasingm until m≈ 0.5P, whereupon it slowly rises to over 3 times the minimum
at m= 500. At smallm, E f is larger than in the serial case and at first rises to a value
about 4 times larger than the serial value atm≈ 0.4P. Asm increases further,E f gradually
decreases, and abovem≈ P, it becomes less than the serial value. This behavior is generic
to all P but becomes more pronounced asP increases.P= 50 is shown because studies
were made over a larger range ofm thanP= 100.
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TABLE I

Mixing Data for 50 Processors

m Ef × 10−3 N

10 2.96078 3084
20 1.45944 2900
25 0.918273 2942
30 0.585394 2911
35 0.716595 3209
40 0.661397 3438
50 0.499726 3706

100 0.335584 4870
200 0.276520 6591
500 0.302882 10070

Serial 0.417433 182322

Note.See text for details.

This interplay ofE f andNP results in sharply peakedSas a function ofm, as shown in
Fig. 4. The decline inE f with increasingm means that, althoughNP is at a minimum when
m≈ 0.5P, the speedupS is largest atm≈ 0.6P. Using this empirical observation to tune
the algorithm, we constructed the speedup curve shown in Fig. 5. This figure shows that the
algorithm provides parallel speedup at 100% parallel efficiency at up to 50 processors, and
approximately 80% efficiency at 100 processors.

FIG. 4. Mixing behavior. The mixing intervalm is shown logarithmically on the horizontal axis and the
quality-corrected speedupSPwith probable error on the vertical axis. Each curve showsSPas a function ofm
for the indicated number of processorsP. Each point is the average of 100 runs.
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FIG. 5. Speedup. This curve shows the speedupSP with probable error as a function of the number of
processorsP, while keeping the mixing interval at the optimal valuem= 0.6P.

5. DISCUSSION

We have demonstrated that our new SA parallelization approach can lead to nearly 100%
parallel efficiency for optimization problems with a strictly nonseparable cost function.
All prior parallelization methods, including the powerful asynchronous parallel SA, fail to
converge to a solution to this problem. We have neglected the communication costs in our
performance analysis of sample runs because, in realistic applications of the gene circuit
problem the time of evaluating the cost function is much larger than that for the communi-
cation needed for pooling statistics, which makes communication time indeed negligible.

We have also characterized the annealing behavior of a particular problem and shown
how to measure parallel efficiency accurately in optimization problems involving continuous
search space.

In summary, optimization problems can be divided into two groups for parallelization
according to the relative costs of computing the cost function versus communication for
pooling statistics and mixing states. Group 1 is for problems with large ratio of computation
to communication. These problems can be solved using the algorithm presented here.

Group 2 is for problems with a lesser or equal ratio of computation to communication such
as the TSP, for which the communication must be done at coarser scale. Good performance
on group 2 problems is largely a matter of tuning the code to perform well on a particular
set of hardware in the context of a specific problem. Here the challenge does not include
the fundamental method of parallelizing SA. Instead, it is the construction of a new kind
of adaptive SA in which communication schedules, as well as temperature schedules, are
adaptively determined.
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