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We report the results of testing the performance of a new, efficient, and highly
general-purpose parallel optimization method, based upon simulated annealing. This
optimization algorithm was applied to analyze the network of interacting genes that
control embryonic development and other fundamental biological processes. We
found several sets of algorithmic parameters that lead to optimal parallel efficiency
for up to 100 processors on distributed-memory MIMD architectures. Our strategy
contains two major elements. First, we monitor and pool performance statistics ob-
tained simultaneously on all processors. Second, we mix states at intervals to ensure
a Boltzmann distribution of energies. The central scientific issue is the inverse prob-
lem, the determination of the parameters of a set of nonlinear ordinary differential
equations by minimizing the total error between the model behavior and experimental
observations. © 1999 Academic Press
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1. INTRODUCTION

Simulated annealing (SA) is an effective method for the optimization of complex c
functions for which heuristic methods do not exist. Its strength is that under appropr
conditions it will attain the global extremum of the cost function; its weakness is hi
computational demand. For this reason it is of great importance to parallelize SA. Prev
work in this area has produced a number of methods that perform well on certain probls
but we are not aware of algorithms that perform well on general applications.

In this paper we introduce a new class of algorithms for parallel SA that does not der
on the structure of the optimization problem. We show that one particular implementa
of this algorithm is scalable for up to 100 processors at nearly 100% parallel efficiency

In Section 2, we discuss the Metropolis method, SA, and the Lam-enhanced SA, and
we review previous work and introduce our new approach to parallelizing SA. In Sectiol
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we describe our particular application, an inverse problem which arises in developme
biology, in which the parameters of a set of nonlinear ordinary differential equations (OD
are determined from time series data by a fitting process. In Section 4, we present our ow
proach to the problem and show the dependence of the performance of our approach or
rithmic parameters. We also introduce an accurate method of measuring the quality of re

Accurate measurement of the quality of results is important for two reasons. First,
evaluation of the performance of a SA algorithm requires good statistics because o
stochastic nature of the algorithm itself. Second, wall clock time reduction in computini
almost always meaningless for measuring the parallel efficiency of the optimization a
rithms. A speedy floating point operation done by multiple processors does not guare
quicker solution of the problem because of possible alteration of convergence behavi
parallelization. We show how changes in the quality of the answer computed in par:
can be compensated for by constructing a function relating the quality of the answer t
number of iterations required to obtain it in serial.

2. ALGORITHMS

Our approach involves a sequence of algorithms based upon the Metropolis algor
[17]. First SA [11] was introduced as an optimization method, generalizing the Metrop
algorithm to include variable temperature for escaping from local minima effectively. S
ond, Lam [12] further enhanced SA by adaptively controlling the rate of temperature
crease and the size of moves so as to maximize the optimization efficiency. Third, we |
parallelized Lam’s version of SA. As is well known, SA is difficult to parallelize due t
its intrinsic serial nature and direct parallelization of the Metropolis algorithm will not |
scalable. Our approach involves strategies of pooling statistics of both state and algol
parameters, while stirring the system.

Now, we will describe the Metropolis algorithm, the SA, and our parallelization.

2.1. The Metropolis Method

The well-known Metropolis algorithm is a method of sampling a Boltzmann distributic
A system with energyE,q is provisionally perturbed into a new state with enefy,,.
Such a perturbation is called a “move.” B,y < Eog the new state is accepted, and i
Enew > Eoig the new state is accepted with probabilityexp(—(Enew— Eoig)/ T), WhereT
is the temperature. If the new state is not accepted, the system remains in the old state
algorithm tends to transform any distribution into a Boltzmann distribution and mainta
a preexisting Boltzmann distribution [17].

The original purpose of this algorithm was to perform ensemble calculations numeric
Although an ensemble typically has an infinite number of members and traditionally \
used for analytical calculations, the advent of computing machinery has led to the popul
of making ensemble calculations by Monte Carlo methods such as the Metropolis algori
In these methods, the ensemble is sampled and placed in computer storage. The ens
is stored as a very large array of structures, each containing the values of the microsi
and macroscopic variables for that particular ensemble member.

The utility of an ensemble stems from the fact that an appropriate average for some c
tity over the ensemble will give the same result as taking a time average over observa
with a physical measuring device—the “ergodic property.” We note that the Metrope
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algorithm itself can be thought of as an application of ergodicity, in the sense that an
erage over Metropolis samples gives the same result as either an ensemble averag
physical measurement. Although the Metropolis algorithm has its own internal sens
time, in terms of a current state that may or may not be replaced by a proposed new ¢
that succession of states cannot be identified with the succession of states in an actual
ical system. The ergodic nature of the Metropolis algorithm suggests the basic strate
parallelizing SA discussed throughout this paper.

2.2. Simulated Annealing

SA was first introduced as an optimization method by Kirkpatethal. [11] using a
metaphor from statistical physics. SA generalizes the Metropolis algorithm by allowing
temperature parameter to change. This temperature is usually lowered slowly during
annealing process. The precise rate of change of the temperature, or the annealing sct
is the most essential part of SA as it determines the performance of the algorithm. A |
cooling rate leads to poor results because of lack of representative states, while a low cc
rate fails to produce results in a practical amount of time.

A number of annealing schedules have been used, of which the three most importar
called logarithmic, Cauchy, and exponential [3]. It has been proved that SA will conve
to the global minimum of the cost function if temperature changes are governed by
logarithmic schedule, in which the temperatieat stepk is given byTy = Top/Ink [6, 3].
These proofs use moves drawn from a Gaussian distribution. A faster schedule in w
Tk = To/ k was shown to converge to the global minimum when moves are drawn fror
Cauchy distribution [27], and this schedule is known as the Cauchy schedule. Itis somet
called “fast simulated annealing.” Even faster is the exponential, or geometric, sche
whereTy = Toe~°K. To our knowledge, no rigorous proof of the convergence of this schedi
to the global optimum has been made, although good heuristic arguments for its converg
have been made for a system in which annealing state variables are bounded [9].

The severe computational requirements of SA mean that an exponential schedule
quired for practical computation. Convergence behavior must be assessed numerica
these computations there is often little prior knowledge of the properties of the cost funct
a fact with two important consequences. First, it is usually necessary to choose a move
eration function in a problem-dependent manner. This contrasts to proofs of converge
where the move generation function is essentially chosen in a schedule-dependent m:
Second, the lack of prior knowledge of cost function properties can be compensated fc
using information about the cost function obtained during the annealing run itself. Sct
ules that make use of such information are called “adaptive schedules.” Such sche
adjust the rate of temperature decrease, based on the partial derivatives of the cost ful
at a single point [9] or on its statistical properties [1, 8]. Of particular importance is 1
adaptive schedule of Lam.

2.3. The Lam Schedule

The Lam schedule [12, 13] was derived by optimizing the rate at which temperat
can be decreased subject to the constraint of maintaining quasi-equilibrium. It differs f
other adaptive schedules in that it explicitly takes into account the effect of move gener:
strategies and provides an adaptive recipe for their control. The Lam schedule is not w
known, and its key features are reviewed below.
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The Lam schedule is an adaptive exponential schedule given by
1 1 4po(s) (1 — po(S))?

=055 (@) ( ) e

o (50 /) \ s202(s0) (2 - po(30)? @

wheres, =1/Tg, and T is the temperature at tHah evaluation of the cost functioB.
o (%) is the standard deviation & at this step, an@o(s¢) is theacceptance ratipthat is,
the ratio of accepted to attempted moves. The four factors play the following roles:

1. X is a quality factor. Making. smaller increases the quality of the answer but it als
increases the computation time.

2. (1/0(x)) measures the distance of the system from quasi-equilibrium.

3. (1/sfaz(sk)) is the inverse of the statistical specific heat which depends on the varia
[11].

4. (4po(s)(L— po($))?/ (2 — po(s))?) is equal topy/2, wherep, is the variance of the
average energy change during a move. It is a measure of how effectively the state sp
sampled and was found to be at a maximum value when0.44.

Lam supplies a set of statistical estimatorsd@s,) and the average ener@y(sc). These
estimators are computed from averages taken at two scales. The energy and varian
averaged every moves, where is an empirical algorithm parameter on the order of 1001
1000. These averaged energies are in turn averaged in an annealing-time decaying rt
average, the time constants of which are set by the user. The running average is L
in reducing errors i due to autocorrelation in the SA process. The dependence of
estimated energy and variance on temperature is found by a fit to the probability de!
function modeled by a local gamma distribution. Thus, the estimaésl used to lower
the temperature at each step according to Eg. (1).

2.4. Parallelization

The original Metropolis algorithm [17] from which most SA algorithms are derived se
alizes a parallel physical process, i.e., computing ensembles. In the Metropolis algori
a new state always depends on one or more previous states plus one or more randon
ables. This serial nature of SA is an inherent distraction to parallelization. Much previ
work in parallelizing SA did not consider this underlying physical metaphor but attem
to parallelize by dividing state variables or by multiple moves on the same variable am
processors [7].

The most successful scalable method, known as asynchronous parallelization, car
to acceptable speedup. For cost functions that are loosely coupled, i.e.,

E(Xe, oo Xiy ooy Xn) R E(X0) + -+ E(X) + -+ + E(Xn), 2)
each processor receives a copy of the state. .., X, ..., Xn). Each processoj then
executes the Metropolis algorithm, altering a range of state variahleg;1, ..., Xj4+m.

Node j uses unchanged values xffor i < j andi > j + m while these state variables
are being altered by other processors. The state information of each processor will be
increasingly erroneous as this takes place, but after some number of iterations the proc
pool their new values of; and then dispatch them anew for further annealing. This meth
can give good parallel speedup, but only if (2) is satisfied. For cost functions without s
properties, the algorithm can show catastrophic divergence [16].
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Our approach is to take the notion of the Metropolis algorithm as a convenient v
of generating ensemble samples on a serial computer and extend it by considering
to generate ensemble samples on a parallel computer, while being careful to mail
the Boltzmann distribution as the temperature is lowered. The essential ideas are
simple. A Boltzmann distribution can be sampled in parallel by a set of processors wi
all execute the Metropolis algorithm using independent Markov chains. Averages ¢
macroscopic variables are performed by pooling statistics obtained from all processor:
the temperature is lowered, from time to time mixing occurs during which each proce:
chooses a preexisting state of enekgywith probability ccexp(—Es/ T). The detail of this
procedure are given in Section 4.1.2.

Elements of the above approach, pooling of statistics combined with mixing of sta
have been used separately by others. Frost has developed a method based on pooling
statistics among many processors, but without communication of state information.
scheme implements an adaptive schedule which adjusts the cooling, based on estime
specific heat. No explicit measurements of speedup are reported [5, 4].

The idea of mixing and selecting states has been used in some related work. The
tolic algorithm of Aartset al. makes a series of pairwise state selections according
the Boltzmann distribution [2] and achieved 75% parallel efficiency on eight process
Roussel-Ragot and Dreyfus have reported a method designed to maintain the Boltzi
distribution in parallel in which all processors synchronously make a move from a comr
state and one of the accepted moves is randomly chosen as the new common state [
no moves are accepted, the process repeats until a new state is accepted by one pro
If move generation is not adaptively controlled then, typically, acceptance rates are hig
high temperatures and low at low temperatures, so this algorithm can produce good spe
at low temperatures. However, the same efficiency increase can be had in serial by ad:
control of the move size. Ingber has proposed a similar method, but no information is g
on the speedup achieved [10]. Slezak was able to obtain 50% parallel efficiency on 40
cessors using a mixing method in which the state of the lowest energy processor is c
to all processors [26]. None of these methods use all-to-all Boltzmann mixing, howe
nor are they parallelizations of an adaptive serial algorithm.

Our algorithm for parallel SA does not depend on any special properties of the ¢
function. The algorithm was developed to solve a particular inverse problem arising
developmental biology, in which the parameters of a set of nonlinear ODEs are determ
from time series data by a fitting process. This problem has proved refractory to many o
common annealing schedules because the state variables for the optimization have v
differing characteristic scales. Hence the problem requires the Lam schedule for solutio
serial. Furthermore, the cost function associated with this problemis completely insepar
and asynchronous SA fails to converge. Therefore, we need to parallelize the Lam sch
to solve this problem.

3. THE INVERSE PROBLEM IN GENE CIRCUITS

Asetoftechniques, called “gene circuits” has been developed for analyzing gene netw
[18, 21-23, 25, 20]. The gene circuit method takes gene expression data as inpul
computes a regulatory circuit as output. We represent a circuit by the elefi@hts a
matrix, each one of which characterizes the regulatory effect of one gene on another
single real number for each possible pm@ndb. Thus if T2° is positive gené activates
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genea; if it is negative gend represses gers and if T2 is zero gend has no effect on
genea. This is the simplest model that allows for the possibility that each gene regulz
every other gene.

3.1. Chemical Kinetic Equations

The equations describe a stage of insect development in which the embryo contains
cell nuclei which are not yet separated by cell membranes. Consider a linear array of
nuclei indexed by, such that nuclei + 1 andi — 1 are the neighbors of nucleusEach
cell nucleus contains a copy of a regulatory circuit composel gfenes, and which is
determined by amN x N matrix T. (Note thatN, n, m, andx refer to quantities in Eq. (3)
in this section only.) The concentration of thlh gene product in nucleusds a function of
time, denoted by?(t). Then

a N

‘Lit' = Raga<ZTava +myd 4 ha> + DM [(vy — o) + (Vg — vf)] — 2avf,
b=

' @3)

where N is the number of zygotic genes included in the circuit. The first term on t
right-hand side of the equation describes gene regulation and protein synthesis, the
ond describes exchange of gene products between neighboring cell nuclei, and the
represents the decay of gene products.

In (3), T2 is a matrix of genetic regulatory coef'ficient:;?‘vib‘:d is a bias term aris-
ing from the spatially varying but time-invariant distribution of a maternally express
morphogenetic protein known as Bicoid (Bcd) [15, for a review], whéfé‘ is the con-
centration of Bcd protein in nucleusandm? is the regulatory coefficient of Bed acting
on zygotic gene. g, is a “regulation-expression function,” which we assume takes t
form ga(u?) = (1/2)[(u/+~/u2+ 1) + 1] for all a, whereu? = S\ | T2PyP 4+ mevPed 4 he,

R, is the maximum rate of synthesis from gemendh? summarizes the effect of general
transcription factors on gere The diffusion parametdd?(n) depends on the numbeof
cell divisions that have taken place and varies inversely with the square of the distanc
tween nuclei. We assume that the distance between adjacent nuclei is halved afteran
division. 1, is the decay rate of the product of gesmeNuclear divisions are incorporated
by shutting down synthesis during each mitosis and doubling the number of nuclei.

3.2. The Cost Function

Our cost function is given by

E= Z (via(t)model - Uia(t)data)2 + (penalty terms 4)
all a,i, t, and

genotypes for
which data exists

which is a function of ODE parameters and the experimental data. This dependence |
coded in the first term which contains the sum of the squared deviation of the solutior
(3) for each time, gene product, genotype, and nucleus for which data exists. The pe
terms limit the search space by adding a very large or (in some cases) infinite term t
energy when parameters are outside the search space. Clearly, Eq. (2) is not satisfied |
equation.
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The penalty term$l in Eq. (2) are given by
Epenaity = ITra + ITja + e,

wherellg. andIT;a represent search space limits f&t andA?, respectively. When these
search space limits were exceeded, the move was rejected without integrating the eque
so this term may be thought of as being zero within the search space and infinity outsi
The third penalty term is given by

2 2
exXP(A (Zan (T00Ba)* + (meufed)” + (h7)2)) - 1
— . 2 2
M = iff A (Y4 (T2P0Ra)” + (M20ed)® + (h?)?) >0 ()

0, otherwise
Herevp, andvPd are the largest values offor genea andv°°d found in the dataset.
A controls the size of the search space for terms that contributg, &since a very large
penalty will arise whenever the argument of the exponential is greater farThus, the
effect of the penalty on? is to limit the maximum saturation afto (1— A).

3.3. Serial Optimization of the Cost Function

Lam’s schedule (1) is not dependent on any particular problem. A problem-specific m
generation scheme must also be supplied. In order to keep the overall acceptance rate
to 0.44, the move generation scheme must allow for changes in the average size of m
Increases in the size of proposed moves tend to decrease the acceptance rate, and de
in the move size increase the acceptance rate. Larger moves are less likely to be acc
at lower temperatures. The net result is that the size of moves decreases slowly d
the annealing run as the system samples the state space more and more selectively
convergence to a global minimum. Here and in previous work move size was controlle
drawing moves from an exponential distribution with a meaé'p§o that a move consists
of changingx; to x"" by setting

XMW — x; +6'Ing, (6)

where the sign is chosen randomly, and the random nuénb€®, 1] is drawn from a uni-
form distribution.@' is adaptively controlled for each variable by accumulating acceptar
statistics and periodically changi by setting

In@' ., = 3.0(00 — 0.44) +In 6, )

in such a way as to keep the acceptance rate at the desired level of 0.44.

The annealing process is initialized by first making a large number (10,000 in the w
reported here) of moves at a high £ 1000) initial temperature, discarding all statistics tc
erase any trace of the initial state, and then performing the same number of moves ag
gather initial statistics.

The annealing procedure is terminated when the average energy afteps fails to
change by more than a stopping criteriothree times in succession. The need for a stoppir
criterion is characteristic of a problem with continuous variables. In a problem with discr
variables like the traveling salesman problem (TSP) [14], the annealer would stop whel
energy became completely fixed—that is, when no further moves are accepted.
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The importance of the Lam schedule to this optimization problem can be summarize
two observations. Without the adaptive control of move size, the algofélsio converge
to the global minimum. Without the statistical estimators for the variance, converge
takes about three times as many iterations as when they are used.

The reliability of the SA procedure was assessed by assigning parameters rand
solving the equations, and then using the solutions at a few time steps as synthetic “
for the annealing procedure. Accuracy of the algorithm is then assessed by recovery ¢
original parameters. In this paper we consider a test problem with two genes and eight nt
The parameters associated with one gene are fixed, so seven are sought by the annea
this problemR,, Aa, and D2 are recovered to about 0.01% accurdk$P andm? to about
1%, andh? to about 7%.

4. IMPLEMENTATION AND PERFORMANCE ANALYSIS

Inthis section we discuss the details of the implementation, how the results were analy
and the results themselves.

4.1. Implementation

The two design principles of pooling statistics and periodically mixing states are imy
mented as follows. This implementation was originally done with the Paragon mess
passing NX library, and the results described here were obtained with that impleme
tion running on a 128-processor Paragon XPS at SUNY-Stony Brook. This machine
distributed-memory MIMD architecture with i860 processors. More recently the implem
tation has been ported to MPI for use on clustered workstations coupled by fast Ethe
Source code is available on request.

The analysis of performance in our study does not depend on the specifics of the parti
architecture as our focus of the analysis is on the quality of algorithms. The measurel
of parallel efficiency requires results from serial machines. For our serial performance ¢
we used workstations with the Alpha 21164 processor, which is about 10 times faster
the i860 in the Paragon.

4.1.1. Parallel Statistics

The Lam schedule takes three kinds of averages, of which two are concerned witl
current energy and variance and the third, with the control of move generation. Cur
energy and its variance is estimated in two stages, in which averagesste@s are in turn
averaged with past averages ovesteps with exponentially decaying weights. In the worl
described here, we divide the cost function evaluations required to compute the average
7 among all of the available processors. Following each evaluation of the cost function, ¢
processor lowers its temperature by an amount equal to the change in temperature
serial case multiplied by the number of processors, so that the temperature change c
moves is the same in the parallel and serial cases.

We do not parallelize the longer term averages used to estimate the local gamma dis
tion and, through it, the energy and variance. This approach was chosen as the most
route to parallelism; it has the advantage that Lam’s estimators can be used unche
with a synchronous and identical calculation of them taking place in each processor. |
the disadvantage of introducing an artificial scaling limitation into the parallel algoritt
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because it is not possible to split the job onto more thamocessors. In all calculations
reported in this papet, = 100.

During initialization, the 10,000 moves designed to erase the initial state are perfor
separately on each processor. The subsequent set of initial moves designed to collect
tics are allocated among the processors and performed in parallel. We have not mad
attempt to measure the minimum number of iterations required for the initial run of deco
lation moves, which are not part of the parallel algorithm. For this reason, measuremer
the number of cost function evaluatioNsreported below do not include the initial 10,000
decorrelation moves, but do include the initial moves used to gather statistics.

Statistics on the acceptance rate of proposed moves are calculated in parallel by a str
forward parallelization of the serial method. In the serial case, acceptance statistic:
calculated over 100 sweeps, where a sweep is defined as a cycle of making moves or
parameter in turn.

In the parallel case, each processor independently attempts a move on the same
eter. After one sweep with processorsP attempted moves have been made on ea
parameter among all the processors. After 100 attempted moves on each paramete
been performed among all processors (I®8weeps), acceptance statistics are pooled a
an identical calculation of the new average move size is performed in each processor. |
generation (see Eq. (6)) is problem specific, and hence, our move generation module s
almost no data with the code module responsible for calculating Lam statistics.

This fact, together with the need to make synchronous and identical calculations of |
Lam estimators and acceptance statistics, introduces the disadvantage that the num
processors used for the calculation must be a divisar of

4.1.2. Mixing of States

The above procedure constitutes a parallelization of the sampling of a Boltzmann di
bution. Extension to a full parallel SA algorithm requires taking advantage of paralleli
to maintain a Boltzmann distribution while the temperature is being lowered. The fun
mental limitation on increasing the rate of cooling in SA is that the Markov chain cani
sample a sufficient number of states in the neighborhood of a given temperature to
in quasi-equilibrium. The solution to this problem is to allow each processor to sam
the states of other processors. Afterrepetitions of the loop over, such that the cost
function has been evaluateak times altogether anchz /P times in each processor, a se
of synchronous messages are passed by which each processor broadcasts its current
to all other processors. Each processor then randomly chooses a particular target proc
with the probability of choosing processpmiven by

e Eo/T
= 5T (8)
e/

and these choices are synchronously shared among processors. At this point each pro
is committed to adopting a new state from its particular target procgssamd the new
states are distributed with point-to-point messages.

In the absence of an analytical model for this algorithm, the optimal choice isf
an empirical process. Communication is essentially eliminated whén large. In the
case of smalm, favorable states will populate the system so rapidly that state variak
become excessively correlated. This correlation will lead to erroneously small estimate
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the variance which in turn will cause the temperature to be lowered too rapidly, resultin
severe loss of quality of the results. In the sequel, we show that both of these effects in
take place, but that a suitable choicenotan lead to very high annealing efficiencies.

4.2. Performance and Analysis

Careful study of the efficiency of parallel SA encounters difficulty from two sources. Fir
the stochastic nature of the algorithm requires careful statistical treatment of the res
Second, parallelization can introduce changes in the quality of the final results which a
the estimate of the speedup.

4.2.1. Average Performance with the Associated Error

Repeated annealing runs on the test problem typically gave results that had large vari
about an order of magnitude in both the final energy and the number of iteraignbn(
performance studies, at least 100 runs were performed under each set of condition
arithmetic averages were taken oeand the final energfe. When error ranges for these
averages are shown, they were calculated by a bootstrapping (“jackknifing”) procedure
Given a set of] final states,) samples are drawn randomly from the results without rega
to duplication and averaged. The error shown represents the extrema of the resulting
averages.

4.2.2. The Serial Performance Curve

In order to compensate for changes in the quality of the result because of paralleliza
it is desirable to know the expected number of serial iterations corresponding to a partic
energy. Then the speedup can be calculated by dividing the number of expected ¢
iterations at the final energy obtained in parallel by the average number of parallel iterat
required. We first must establish the existence of such a serial performance curve for a |
cost function.

In the application of SA to a classical combinatorial optimization problem such as
TSP, it is easy [13] to construct a curve relating the average final energy to the ave
number of iterations required to attain that energy. Such a curve is obtained by varying
overall cooling ratej. In a system with a continuous state space, the resulting quality
determined not only by, but also by the stopping criterior, This raises the possibility
that a given final energy does not correspond to a unigue number of iterations.

We characterized the dependence of final en&rgynd the number of serial iterations
Ns on A andx by an extensive series of numerical runs. At large valueswé noticed a
bimodal distribution of final energies, in which a small proportion of runs finished kjth
significantly greater than unity, while most runs completed \Ethon the order of 10° or
less. In order to understand this behavior better, we performed a series of quenching
in which the temperature was instantly lowered from the initial equilibration level to ze
at the start of annealing. A histogram of the resulting from such a set of runs is shown ir
the inset to Fig. 1. The resulting distribution is strongly bimodal, with two empty deca
separating a peak around?lffom one at around 1¢. These indicate that the stochastic
dynamics of the annealing process is bistable, and we refer to the left-hand peak in the
to Fig. 1 as the “annealed attractor” and the right-hand one as the “quenched attractor.”
contains approximately the same number of points, are clearly separable, and the que
attractor contains enough points for statistical study.
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FIG. 1. Bimodal behavior. This figure shows the bimodal behavior of the solupfior given values of
algorithm parameter with algorithm parameter = co. As shown by the inserted histogram, foe= 108 we
see runs producing; with mode around 10and around 10* separated by two empty decades (4 runs fell ir
the —2 bin). Note that the histogram uses logarithmic coordinates, while arithmetic averages were perform
obtain the points on the graph. Hence the modes of the histogram differ from the plotted means.

We characterized the behavior of these two attractors further by varyivigle holding
A =o00. The result is shown in Fig. 1. It indicates that the annealing attractor shows
creasingE s with decreasing, but thatE; for the quenching attractor remains essentiall
constant. As\ decreased;¢'s belonging to the quenching attractor become increasing
rare. Wherk < 3 x 1073, the frequency drops to less tharr#@nd becomes undetectable.
We have never seen a representative of the quenching attractde widiss than unity, and
in all cases for which averages are shown there was at least an order of magnitude sepe
members of the quenching attractor from members of the annealing attractor. For this
son, in the subsequent results we rejecte& all- 1 as a member of the quenching attractol
These constituted less than 1%.at 1 x 10~2 and 2 out of about 7800 experimental run:
performed in parallel.

We then characterized the dependence of the avedtagend N of the annealing at-
tractor oni and«, as shown in Fig. 2. Inspection of this figure shows that the upp
right-hand side of the energyl/iterations plane is well coordinatized by curves of cons
A andk. In this region, changing alters the number of iterations required but has littl
effect on the energy. Similarly, alteration ofaffects the final energy but has little ef-
fect on the required number of iterations. The lower left-hand side oEtheNs plane is
the region where SA is most efficient. Curves which approach the lower left-hand por
of the plane run into an envelope of maximum efficiency, which constitutes the des
characteristic relationship between energy and serial iterations for efficient annealin
particular, note that a trajectory along this envelope can be traversed by varyingieith
ork.

Close inspection of Fig. 2 reveals another interesting feature. Decraasihge holding
A = const for most values af, produces an almost horizontal trajectory onhe-Ng plane
which, when it encounters the envelope of maximum efficiency, traverses the enve
towards the upper left. Similarly, increasingwhile holding « = const for most values
of ¥ produces an almost vertical trajectory which, when it encounters the envelop
maximum efficiency, traverses the envelope towards the lower right. The curves fti—*
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FIG. 2. SA characteristics. The dependence of Lam-enhanced SA's serial performance on the algorit
parameters. and«. The solid and dashed lines in this figure connect sets of annealing runs performed
common values of anda, respectively, as shown. Each point of intersection of a solid and dashed line repres
the results of a set of 100 annealing runs with the indicated valuesntii. The point is plotted at a location
that indicates the average number of iterations and average final energy of that annealing run as shown. Th
and dashed lines are linear interpolations between observed data points. The hollow box shows the region
Ns—E plane plotted at high resolution in Fig. 3.

andx = 107° provide informative exceptions to this generalization. khe 10~° curve
approaches the envelope and then leaves it, curling back toward the right.The!
curve initially follows the envelope, but then departs from it and follows a trajectory para
to, but above, the envelope. These two curves describe the edge-ofsheet which has
been folded back on itself and projected on the-Ns plane, with the “envelope” the
projection of the fold.

The envelope of maximum annealing efficiency is in fact the desired serial performe
curve. We note that it contains approximately three log-linear regions, each characte
by a particular power law dependency. That portion of the envelope corresponding tc
range of energies obtained in parallel annealing runs lies approximately on a single li
segment (boxed), and we constructed a serial performance curve by sampling that r
densely and fitting to a power law.

Figure 3 shows the result, together with the fitting function. Each data point is the ave
of 1000 independent annealing runs, with errors determined by bootstrapping as sh
The data is well fit by the equation

log,, Ns = 8.396379— 0.466807 log, E. 9)
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FIG. 3. The serial performance curve. The average number of iterations is shown on the vertical axis
the average final energy is shown on the horizontal axis. Each point is the average of 1000 annealing runs
probable error determined by bootstrapping, as shown. The solid line represents the results of a power lav
this data (see text for coefficients).

With this equation in hand, we know that if a parallel run requikgsiterations to run on
P processors and finishes with a final enekgyy, then the speedufis given by

S= Ns(Ep)/Np. (10)

We now have all the tools required to analyze the results of parallel annealing runs.

4.2.3. The Parallel Algorithm Performance

We performed parallel annealing at a variety of mixing intervalgn all parallel runs,
k =105 and A =103, which caused\s and E; to lie on the appropriate part of the
serial performance curve. Because the initial set of decorrelating moves is not perfor
in parallel, we do not count it when evaluatifdp. Both Es and Np varied withm, as
shown in Table | which gives the dependence=qfand Np for 50 processorsNp falls
with increasingm until m~ 0.5P, whereupon it slowly rises to over 3 times the minimun
at m=500. At smallm, E; is larger than in the serial case and at first rises to a val
about 4 times larger than the serial valuenat 0.4P. Asmincreases furthek ¢ gradually
decreases, and abowex P, it becomes less than the serial value. This behavior is gene
to all P but becomes more pronouncedRsncreasesP =50 is shown because studies
were made over a larger rangermthan P = 100.
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TABLE |
Mixing Data for 50 Processors

m Er x 10 N
10 2.96078 3084
20 1.45944 2900
25 0.918273 2942
30 0.585394 2911
35 0.716595 3209
40 0.661397 3438
50 0.499726 3706
100 0.335584 4870
200 0.276520 6591
500 0.302882 10070
Serial 0.417433 182322

Note.See text for details.

This interplay ofE ¢ andNp results in sharply peakeslas a function ofn, as shown in
Fig. 4. The decline irfE ; with increasingn means that, althougip is at a minimum when
m~ 0.5P, the speedug is largest am~ 0.6P. Using this empirical observation to tune
the algorithm, we constructed the speedup curve shown in Fig. 5. This figure shows the
algorithm provides parallel speedup at 100% parallel efficiency at up to 50 processors
approximately 80% efficiency at 100 processors.

T
1001 T
80 7

P=100
60 7
SP
40 Ny =
P=50
20[ P=20 ]
P=10
P=5

0 b | \ L

1 10 100 1000
M

FIG. 4. Mixing behavior. The mixing intervain is shown logarithmically on the horizontal axis and the
quality-corrected speedupP with probable error on the vertical axis. Each curve sh@sas a function om
for the indicated number of processdtsEach point is the average of 100 runs.
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FIG. 5. Speedup. This curve shows the spee@®p with probable error as a function of the number of
processord, while keeping the mixing interval at the optimal valwe= 0.6P.

5. DISCUSSION

We have demonstrated that our new SA parallelization approach can lead to nearly 1
parallel efficiency for optimization problems with a strictly nonseparable cost functic
All prior parallelization methods, including the powerful asynchronous parallel SA, fail
converge to a solution to this problem. We have neglected the communication costs ir
performance analysis of sample runs because, in realistic applications of the gene ¢
problem the time of evaluating the cost function is much larger than that for the comm
cation needed for pooling statistics, which makes communication time indeed negligik

We have also characterized the annealing behavior of a particular problem and st
how to measure parallel efficiency accurately in optimization problems involving continuc
search space.

In summary, optimization problems can be divided into two groups for parallelizati
according to the relative costs of computing the cost function versus communication
pooling statistics and mixing states. Group 1 is for problems with large ratio of computat
to communication. These problems can be solved using the algorithm presented here

Group 2 is for problems with a lesser or equal ratio of computation to communication s
as the TSP, for which the communication must be done at coarser scale. Good perforn
on group 2 problems is largely a matter of tuning the code to perform well on a partict
set of hardware in the context of a specific problem. Here the challenge does not inc
the fundamental method of parallelizing SA. Instead, it is the construction of a new k
of adaptive SA in which communication schedules, as well as temperature schedules
adaptively determined.
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